
Pep9Milli
Symbolic Verification of a CISC Processor

Matthew McRaven 
05 December 2019



Overview

● Describe Pep/9, the processor being verified 
● Motivate and describe new hardware language: millicode 
● Discuss verification framework and results



Pep/9 Overview

● Pedagogical virtual computer 
● 16-bit CISC computer 
● Simulated at various levels of abstraction 

○ Assembly Language 
○ Operating System 
○ Hardware Control, termed microcode



Improvements in Pep9Micro

● Feature disparity between assembler and microcode 
● Designed CPU control section, completing processor 
● Correct in all circumstances?



Industry Verification Experience

Vendor Technique

Centaur Formal

IBM Functional

Intel Formal

Rockwell Symbolic



A Different Direction
● No VHDL/Verilog description 
● Microcode is hard to read 
● Enter millicode, a new hardware control 

language 
● Translates to microcode, verifiable C



Constructing a Verification Environment

● Verification needs model of CPU 
● Layered model for abstraction 
● Models CPU operations and memory 
● Translate millicode to C interface



Applying Verification

● Klee performs symbolic execution on C 
● Manually insert assertions 
● Run Klee, check for assertion errors



Verifying a Trivial Program
● Compute first 14 Fibonacci numbers 
● Test millicode, verification environment 
● Manual verification conditions 
● Verified successfully in 63 seconds 

○ Verification call tree (see left)



What Needs Verifying?

● Verify hardware implements instruction set 
● Hardware broken into 4 units: 

○ Instruction Fetch 
○ Operand Fetch 
○ Operand Decode 
○ Instruction Execute 

● Analyze all 4 units to verify Pep/9 processor



Instruction Fetch

● Loads instructions 
● Verification: success! 
● 10 unique paths in 1 second



Operand Fetch

● Loads non-unary instruction operands 
● Verification: success! 
● 16 unique paths in 3 seconds



Operand Decode

● Converts operand, addressing mode 
to useful value 

● Verification: success! 
● 4,026 unique paths in 4 hours 
● Victim of state space explosion



Further Research

● Automate millicode translation 
● Stricter memory model 
● Pep/10 improvements



Conclusion

● Introduced hardware control language, millicode 
● Discussed verification architecture 
● Shared multiple verification results 
● Verified 3 CPU segments (red box)



Pep9Milli
Symbolic Verification of a CISC Processor

Matthew McRaven 
https://github.com/Matthew-McRaven/pep9milli 



Successful Verification Run by Klee


