Pep9Micro:
Microcc mplementation

Matthew McRaven, Mentor: J. Stanley Wartord

Division of Natural Science, Pepperdine University, Malibu, CA 90263 SQ%__A_L{J_L_&_ Mo "

—

¢ o

'Na'-mﬂ e

fim

-PASADENA
CITY(COLLEGH

November 17, 2018

Abstract: Program CPU Microcode with Pep9Micro With Pep9Micro:

Pep9Micro is a newly created tool to teach programming in Microcode. Pep/9 is a 16-bit CISC

computer with eight addressing modes used to teach assembly language programming and computer With Pep9Micro, students can now program and debug across both microcode and assembly language abstraction levels. Students can step through code The Pep/9 CPU was extended by adding a control section and conditional branching shown
systems concepts. Students program with the applications Pep9 and Pep9CPU, which simulate the in any of these levels. New features include setting break points, and use standard debugging comments such as step over, step into, and step out. in Figure 3. By designing a fully functionally Pep/9 control section, programmers may
Pep/9 computer at two different levels of abstraction. Pep9 allows students to program in assembly simultaneously work at the at the microcode and assembly levels. Each conditional branch
language and execute their programs on the virtual machine simulator. At a lower level of enumerates both the target when the condition 1s true and when 1t is false.

abstraction, Pep9CPU allows students to program microcode fragments that implement individual

assembly language instructions. This poster describes the development of a third virtual machine, The design avoids microjump and microreturn instructions, and instead uses lookup tables
Pep9Micro, that extends the capabilities of Pep9 and Pep9CPU by designing a microcode Debug Actions: Supports common debugging features to handle the translation of an assembly instruction or addressing mode to the first line of

File Editor: Break points work for both microcode and
assembly. Students can switch between assembly and
microcode at will.

microcode needed to implement i1it. When these tables are combined with a decoder for a
branch function, 1t becomes trivial to select the next microinstruction.

implementation of the complete Pep/9 instruction set. It provides the assembler from Pep9 and the like step-1nto, step-out, and step-over.
CPU simulator of Pep9CPU so that complete assembly language programs can be executed at the

microcode level spanning two levels of abstraction. Pep9Micro extends the Pep9CPU microcode

language with conditional microcode branch instructions and the design of a microcode store. Pep9,

Pep9CPU, and Pep9Micro are support software for the text Computer Systems by J. Stanley ‘® 0 ®
Warford, and are available on GitHub as open source projects.

Pep9Micro 1s an application that 1s a working implementation of the assembly code
simulator, residing atop data section powered by the newly designed control section and
augmented microcode. The Pep9Micro IDE allows programmers to evaluate programs
written 1n assembly code and watch the programs step along at both the microcode and

B a c kg rO u n d T——— o P My T assembly levels.

Pep/9 Micro

: 0 97 | Ox61 01100001 a ADDSP, d

visualize the operation of the Pep/9 hardware.

MemWrite
MemRead

A A

y DC A bl
. 0x0000 12 00 00 17 00 m SSember 9/
Microcoding 1s a design approach for Complex Instruction Set Chips (CISC) that adds an abstraction 0x0008 58 c0 00 02 e3 Bl 2/0x0093 | =30 am|0x01007A 45,47 w8|0x0000 | 36,50 w3 BREE3 | 7! LoadCk Microcode - pep9micro.pepcpu + 4
layer between assembly level instructions and the hardware implementation of the instruction set. 0x0010 02 06 24 00 6f eb .A..$.08 2,3 x 0x007C 11 71 0x00 18,19 75 0X007A 26,27 w3 0x0408 | 3 s | C MemWrite, A6, AMux-1, ALU-0, CMux-1, MDREMux-1, MDRECK Conditional
. . . v - a 3 5 Mea_irite, AT?.'., AH\::-I, ALU=0, CMux=1, C=7; LoadCk onditiona
Microcode is heavily utilized in the implementation of x86 processor family (though many other L ceen 4,5 Sp OXPB76 12,13 72 0x0000 10,21 26 0:007C 29,29 e OxPORG [« 24 8 A-20, AMux=1, ALU=0, CMux=1, C=6; LoadCk; branch | 2/
. . * ® “ a et - 5 A call o: A=4, B=5, ux=1, PValid=0; k, PvalidCk
processors have microcode). Microcode manages the flow of data through the CPU necessary to 0x0028 06 46 Ob 78 00 04 ...F.x.. L7 3020075 | M,IN W) 0x0099 AN e e me no:md?n 33 n: | :U . - . - mc . multiplexer
implement each instruction in the machines Instruction Set Architecture (ISA). Due to its tight coupling 0x0030 67 68 00 04 e7 h..g. ; CBus ABus | B8us 0 | MARMux g’ Ay B, R Ly A e e . A A A
. 0x0038 00 02 68 00 01 .E..h. .8 MDROCk
with hardware design, almost all microcode is closed a source implementation. Pep9Micro uses ooso o0 b0 26 26 o mars [ox7e |< //Assign PC<hi> to T4<hi>, so that PC can be overriden earlier in the 9 —
. . . . : : . * “ S gy : \ : P nstruction
available open source CPU research with the Pep9 ISA to provide an interactive introduction to CISC 0x0048 08 00 24 00 6d 50 .E..S. 3 $ — - 7] MARCK Mesttrite, Ar2l, MMumel, ALD=§, Citem=i, C=7) LoaCk specifier | <€—
.) MemWrite, A=20, AMux=]l, *LUT?, CMux=1, C-§; LoadCk
CPU dCSlgl’l. zxzzz: :: Zz :i z: z: an MARA r—r— @ :;;ﬁ.:;h MARMux=1, PValid=0; MARCk, PValidCk decoder
X 7 MemRead o]
| . . . | . . 020060 50 i £ fe et > 4 OH MDROCK :De::::d A=16, AMux=1, ALU=0, CMux=1, MDREMux=0, MDROMux=1; MDRECK, | 27 x 62
Pep/9 1s a 16-bit CISC computer with 58 instructions and 8 addressing modes. Pep/9 addressing modes 0x0068 06 06 00 26 01 ¢ oxo0 Microprogram store W Addressing
. . . . //This one 18 really really bad 1f unaligned ROM
mirror the C memory model; so, programs from C may easily be translated to assembly.Figure 1 1s a Babies 4 " Ta sl & ¢ cot: Ami, BeS, MARMux-1, PValid=0; MARCK, PValidCk mode <]
h f the Pep9 11 . A | 1 | of ab . he d PxouTE 00 oo 0o i MDROMux S Tet o: MemRead, A5, B-24, AMux=1, ALU=1, CMux=1, C=5; SCk, LoadCk
screen shot of the Pep9 application. At a lower level of abstraction, the data section (1.e., registers, main 020080 80 00 oo 20 00 00 oo <‘: MemRead, A=d, B=22, AMux=1, CSMux-1, ALU-2, CMux-1, C=4; LoadCk decoder
5 8 o . . MDRECk MemRead, MDROMux=0; MDROCk
memory access, and the ALU) of the Pep/9 CPU i1s described in the book Computer Systems. Figure 2 1s 0x0088 00 00 00 00 00 00 00 —_j ‘ A-d, B-5, MARMux-1; MARCK
a circuit diagram on which the Pep9CPU application 1s based. =000 80 0 0 B W 0w <:> { oxon MemRead, EOMux=1, AMux=0, ALU=0, CMux=1, MDREMux=0, C=6; LoadCk o 9¥
0x0098 00 00 00 00 00 00 00 Data I ! MDREMux MDRECk N N ' N o ' 1 7 IsUnar
0x00a0 00 00 00 00 00 00 00 MDREMux v STRCTH Z St T LU okt — Y <
EOMux EOMux , A=4, B=22, AMux=1, CSMux=1, ALU=2, CMux=1, C=4; decoder
O0x00a8 00 00 00 00 00 00 00 T d, HDRE)(\}:—C, H!_)ROHux—O; KDREC)(, MDROCk
Editable M D Vi d edit 0x00b0 00 00 00 00 00 00 00 ﬁl\ {L m:::: 33:52 é"‘,.:::i S: ZZ:SS‘; +
itable Memory Dump: View and edi 0x00b8 00 00 00 00 00 00 00 //NEve <- Sp
. . AM - 1 AM rettr: -,. =5 ux=1;
memory on-the-fly. Highlights current Scroll to: 0x0000 T - raes Sp A1 MR 62 Branch
. MemRead, A—F», B-%J, Mux—%, ALU=1, CMux=1, C=17; SCk, Lo?dck function
program counter and any changed values. ' . SES— \ A"T‘s/ . // 1| CMux Memhood, NORNex=0, NoROCK. ¢ ode Cexml, €216 Leedck Branch | True False decoder
(x 15 | * Tvux] :LU /= =1 Aw —— Control signals function | target target
I0 Pane ~ ' <—| Object Code & g |ge A A A
o . CS™M CSM "
Interactive CPU: Watch change in I Sateh 16) u — A - g 3 . - X 2 38 PValid A
. . . Ll Terminal /O g 2% Xwx 8852 X EE ali
data flow while executing microcode. ¢——>[0]«—— v sck 8§ 23i3: i} EEisssppiiil - - '/
i oy R OuRs [0 CCk 256 1 lPValide
iello World!!! -t ’ 257 1
- —[0 VCk B , 1 . L . : : D HasPrefetch
Memcry Dump 0<—| AndZ 259 0 0 0 1 7 1
n
0x0000 12 00 54 00 00 17 00 00 ..T..... a0 main 0 e — w— — — Program counter <15> IsPCEven
ALTGN 2
0x0008 58 00 04 D 00 02 e3 00 X..A..3. s FH R R NZVCS 5 /
-] gDepth: .WORD 23 . . 4
0x0010 02 c3 00 06 24 00 6f eb .A..§5.0d SRR AR Instruction specifier 8,
0x0018 00 00 c0 00 01 e5 00 OO ..A..A.. S il: EOUTE & ik ' 4
0x0020 e5 00 02 cb 00 02 ab 00 &..E..s -y 'm”‘:g‘;ﬁ.ﬁ M)) . . .
%0028 06 1o 00 46 06 78 00 0 . it: .EQUATE 2 . 474 Fig.3 — The newly designed CPU control section.
x N e Eade arr: .EQUATE 0 :#2d
0x0030 67 00 00 6B 00 04 e7 00 g..h..g. ® fib: ig::f’ ;l jpush #1t #arr ——
0x0038 00 cb 00 02 68 00 01 eb .E..h..& BTHR ié?ﬂ e o k l . 1
Acknowledgements
0x0040 00 02 12 00 26 26 e3 00&a. CALL new S L R n m n ° Onc USlOnS .
- . STWX arr,H M3 |-4»|\H4 |_nm:< "_*_ ¢ o
: 28 __20 __ b Support for this project was provided by the Natural Science Division at , , ,
Fig. 1 - Memory Dump and Assembly Code Program for Pep9. melomlorell s - i ; o Pep9Micro provides students with tools to program and troubleshoot CPU
wis [oFE TOFF Pepperdine University and the Academic Year Undergraduate Research Initiative , , , I ,
(AYURI) Fall 2018 microcode, while using IDE tools that are similar to popular IDE environments.
ABus BBus
o o Since most legacy architectures are closed source, this tool provides students the
l O u ep lc rO % ability to see the magic inside the CPU.
MARCk
Pep9CPU i1s an 1ntegrateq development. envn'onmept (IDE) that allows s.tuder.lts to create microcode | MDRCk Re fere ces . Pep9Micro is also a stepping stone to the future. With the advent of open source
fragments to perform various computations according to the Pep/9 specification. However, the 5 | I | ° processors, microcode can become open sourced just like other software projects.
lication 1s unable to fully implement an arbaitr mbly program since it lacks an | e AMox . : e - - - -
app : catio cf unab elto ully cll) E Z. t. él 21‘ b t &1ty a§s§ bly pT(l)lg af SALEE t O ; | MDRMux 1] Computer Systems, J. Stanley Warford, Jones and Bartlett Learning, 5t edition, 2017. This trend 1s already starting with open platforms, such as RISC-V.
implemented control section and conditional microcode jumps. Therefore, a microcode programmer l N VA - L 0
'mp o -) > Jump) S HAC Prog | " CMux 2] Structured Computer Organization, Andrew Tanenbaum, Pearson 5% edition, 2005.
1s always limited to writing code fragments of arithmetical and logical operations without any | MU e ALy - : : . :
. | f<Cin__ 3] Superscalar Microprocessor Design, Mike Johnson, Prentice Hall, 1990.
ablhty to lOOp) : | CSMux |=e— CSMux
: Cout 4 El
I > 5 |-— SCk
From the view of an assembly code programmer using the Pep9 application, one could write an Mem || EE—T Y
arbitrary application and execute it. The simulator 1s a complete model of Pep/9 at the assembly N — a s
. . . . A n] | - AndZ
level, but due to the lack of the Pep/9 CPU control section, 1s unable to model the inner workings of Daa C— | 0 i e
. . . : Zout -)
the CPU. Therefore, the programmer, while able to execute arbitrary code fragments, is unable to ;) ! 5 -
| | N [-— NCk

The lack of a Pep/9 control section means a programmer cannot write assembly code programs or

trace its execution in hardware at the CPU level. Fig. 2 — Data section of Pep/9 CPU

