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Abstract: Program CPU Microcode with Pep9Micro With Pep9Micro:

Pep9Micro is a newly created tool to teach programming in Microcode. Pep/9 is a 16-bit CISC

computer with eight addressing modes used to teach assembly language programming and computer With Pep9Micro, students can now program and debug across both microcode and assembly language abstraction levels. Students can step through code The Pep/9 CPU was extended by adding a control section and conditional branching shown
systems concepts. Students program with the applications Pep9 and Pep9CPU, which simulate the in any of these levels. New features include setting break points, and use standard debugging comments such as step over, step into, and step out. in Figure 3. By designing a fully functionally Pep/9 control section, programmers may
Pep/9 computer at two different levels of abstraction. Pep9 allows students to program in assembly simultaneously work at the at the microcode and assembly levels. Each conditional branch
language and execute their programs on the virtual machine simulator. At a lower level of enumerates both the target when the condition 1s true and when 1t is false.

abstraction, Pep9CPU allows students to program microcode fragments that implement individual

assembly language instructions. This poster describes the development of a third virtual machine, The design avoids microjump and microreturn instructions, and instead uses lookup tables
Pep9Micro, that extends the capabilities of Pep9 and Pep9CPU by designing a microcode Debug Actions: Supports common debugging features to handle the translation of an assembly instruction or addressing mode to the first line of

File Editor: Break points work for both microcode and
assembly. Students can switch between assembly and
microcode at will.

microcode needed to implement i1it. When these tables are combined with a decoder for a
branch function, 1t becomes trivial to select the next microinstruction.

implementation of the complete Pep/9 instruction set. It provides the assembler from Pep9 and the like step-1nto, step-out, and step-over.
CPU simulator of Pep9CPU so that complete assembly language programs can be executed at the

microcode level spanning two levels of abstraction. Pep9Micro extends the Pep9CPU microcode

language with conditional microcode branch instructions and the design of a microcode store. Pep9,

Pep9CPU, and Pep9Micro are support software for the text Computer Systems by J. Stanley ‘® 0 ®
Warford, and are available on GitHub as open source projects.

Pep9Micro 1s an application that 1s a working implementation of the assembly code
simulator, residing atop data section powered by the newly designed control section and
augmented microcode. The Pep9Micro IDE allows programmers to evaluate programs
written 1n assembly code and watch the programs step along at both the microcode and
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The lack of a Pep/9 control section means a programmer cannot write assembly code programs or

trace its execution in hardware at the CPU level. Fig. 2 — Data section of Pep/9 CPU




