
Pep9Micro:
A Microcoded CPU Implementation

Matthew McRaven, Mentor: J. Stanley Warford
Division of Natural Science, Pepperdine University, Malibu, CA 90263

Abstract:
Pep9Micro is a newly created tool to teach programming in Microcode. Pep/9 is a 16-bit CISC
computer with eight addressing modes used to teach assembly language programming and computer
systems concepts. Students program with the applications Pep9 and Pep9CPU, which simulate the
Pep/9 computer at two different levels of abstraction. Pep9 allows students to program in assembly
language and execute their programs on the virtual machine simulator. At a lower level of
abstraction, Pep9CPU allows students to program microcode fragments that implement individual
assembly language instructions. This poster describes the development of a third virtual machine,
Pep9Micro, that extends the capabilities of Pep9 and Pep9CPU by designing a microcode
implementation of the complete Pep/9 instruction set. It provides the assembler from Pep9 and the
CPU simulator of Pep9CPU so that complete assembly language programs can be executed at the
microcode level spanning two levels of abstraction. Pep9Micro extends the Pep9CPU microcode
language with conditional microcode branch instructions and the design of a microcode store. Pep9,
Pep9CPU, and Pep9Micro are support software for the text Computer Systems by J. Stanley
Warford, and are available on GitHub as open source projects.

Acknowledgements:
Support for this project was provided by the Natural Science Division at
Pepperdine University and the Academic Year Undergraduate Research Initiative
(AYURI) Fall 2018.

References:
[1] Computer Systems, J. Stanley Warford, Jones and Bartlett Learning, 5th edition, 2017.
[2] Structured Computer Organization, Andrew Tanenbaum, Pearson 5th edition, 2005.
[3] Superscalar Microprocessor Design, Mike Johnson, Prentice Hall, 1990.

Background
Microcoding is a design approach for Complex Instruction Set Chips (CISC) that adds an abstraction
layer between assembly level instructions and the hardware implementation of the instruction set.
Microcode is heavily utilized in the implementation of x86 processor family (though many other
processors have microcode). Microcode manages the flow of data through the CPU necessary to
implement each instruction in the machines Instruction Set Architecture (ISA). Due to its tight coupling
with hardware design, almost all microcode is closed a source implementation. Pep9Micro uses
available open source CPU research with the Pep9 ISA to provide an interactive introduction to CISC
CPU design.

Pep/9 is a 16-bit CISC computer with 58 instructions and 8 addressing modes. Pep/9 addressing modes
mirror the C memory model; so, programs from C may easily be translated to assembly.Figure 1 is a
screen shot of the Pep9 application. At a lower level of abstraction, the data section (i.e., registers, main
memory access, and the ALU) of the Pep/9 CPU is described in the book Computer Systems. Figure 2 is
a circuit diagram on which the Pep9CPU application is based.

Conclusions:
Pep9Micro provides students with tools to program and troubleshoot CPU
microcode, while using IDE tools that are similar to popular IDE environments.
Since most legacy architectures are closed source, this tool provides students the
ability to see the magic inside the CPU.

Pep9Micro is also a stepping stone to the future. With the advent of open source
processors, microcode can become open sourced just like other software projects.
This trend is already starting with open platforms, such as RISC-V.

Program CPU Microcode with Pep9Micro
With Pep9Micro, students can now program and debug across both microcode and assembly language abstraction levels. Students can step through code
in any of these levels. New features include setting break points, and use standard debugging comments such as step over, step into, and step out.

Debug Actions: Supports common debugging features
like step-into, step-out, and step-over. File Editor: Break points work for both microcode and

assembly. Students can switch between assembly and
microcode at will.

With Pep9Micro:
The Pep/9 CPU was extended by adding a control section and conditional branching shown
in Figure 3. By designing a fully functionally Pep/9 control section, programmers may
simultaneously work at the at the microcode and assembly levels. Each conditional branch
enumerates both the target when the condition is true and when it is false.

The design avoids microjump and microreturn instructions, and instead uses lookup tables
to handle the translation of an assembly instruction or addressing mode to the first line of
microcode needed to implement it. When these tables are combined with a decoder for a
branch function, it becomes trivial to select the next microinstruction.

Pep9Micro is an application that is a working implementation of the assembly code
simulator, residing atop data section powered by the newly designed control section and
augmented microcode. The Pep9Micro IDE allows programmers to evaluate programs
written in assembly code and watch the programs step along at both the microcode and
assembly levels.

Fig. 1 - Memory Dump and Assembly Code Program for Pep9.

Pep9CPU is an integrated development environment (IDE) that allows students to create microcode
fragments to perform various computations according to the Pep/9 specification. However, the
application is unable to fully implement an arbitrary assembly program since it lacks an
implemented control section and conditional microcode jumps. Therefore, a microcode programmer
is always limited to writing code fragments of arithmetical and logical operations without any
ability to loop.

From the view of an assembly code programmer using the Pep9 application, one could write an
arbitrary application and execute it. The simulator is a complete model of Pep/9 at the assembly
level, but due to the lack of the Pep/9 CPU control section, is unable to model the inner workings of
the CPU. Therefore, the programmer, while able to execute arbitrary code fragments, is unable to
visualize the operation of the Pep/9 hardware.

The lack of a Pep/9 control section means a programmer cannot write assembly code programs or
trace its execution in hardware at the CPU level.

Without Pep9Micro

Editable Memory Dump: View and edit
memory on-the-fly. Highlights current
program counter and any changed values.

Interactive CPU: Watch change in
data flow while executing microcode.

Fig. 2 – Data section of Pep/9 CPU

PValid

29 × 62
Microprogram store

ROM

Conditional
branch

multiplexer

Instruction
specifier
decoder

Addressing
mode

decoder

IsUnary
decoder

Branch
function
decoderControl signals Branch

function
True
target

False
target

62

38 4

9 9

9

9

9

2

Program counter <15>
NZVCS

Instruction specifier

5

8

PValidCk
HasPrefetch

 IsPCEven

Fig. 3 — The newly designed CPU control section.

