
Pep9Milli: Verification of CISC Processors using
Software Verification Tools

Author(s) information removed for review

Author(s) information removed for review

Abstract. This paper introduces a process for using open-source soft-
ware verification tools to verify the correctness of CISC microprocessors.
The three-part process introduces a new language (millicode) at a higher
level than microcode. Millicode is compiled to a high-level language (i.e.,
C) as well as microcode. Software verification tools verify that the high-
level language representation meets the processors’s RTL. The process is
demonstrated by verifying an existing CISC processor, Pep/9. A partial
millicode implementation of Pep/9’s RTL is created and verified using
Klee.

Keywords: Microcode · Microcode Verification · Processor Verification
· Microprocessors · Symbolic Execution · Pep9 · Klee.

1 Introduction

This paper introduces a process for using software verification tools for complex
instruction set computer (CISC) processor verification, which allows testing early
in the CPU design phase and supports CPUs lacking a hardware description.
In the realm of open source, tools primarily verify Verilog and SystemC de-
scriptions of processors [40, 49]. For CISC processors containing microcode (an
additional level of abstraction between logic gates and the instruction set ar-
chitecture) there is a dearth of open source verification tools. Companies like
Intel, Centaur, IBM, and others have proprietary verification tools able to verify
microcode and hardware layers [29, 30, 48]. Such proprietary tools (like Intel’s
MicroFormal [2,3])) are not widely available. Neither approach is tenable for mi-
crocoded, open source, CISC processors lacking hardware description language
(HDL) implementations.

Introducing a new language at a level of abstraction above microcode al-
lows software verification tools to be applied to the hardware domain. The new
language, termed millicode, represents an off-chip layer of hardware control. Mil-
licode is designed for ease-of-compiling to an on-chip hardware control language.
It compiles to a high-level language (like C) with existing software verification
tools. The high-level language description of the millicode program may then be
fed to a software verification tool, transitively verifying the processor implemen-
tation.

2 Author(s) information removed for review

V

ALU

MDREven

MDREMux

AMux

CMux

CMux
ALU

Cin

S

CSMux

C

Z

N

SCk

CCk

VCk

ZCk

NCk

Cout

AndZ

AndZ

CSMux

MemWrite
MemRead

0
0
0
0

MDRECk

AMux

4

Zout

MARCk

BBusABusCBus

MARB

MARA

System
Bus

Addr

Data

MDROdd

MDROMux

EOMux

MDREMux

MDROMux

EOMux

MARMux

MARMux

MDROCk

A
0 1

X
2 3

SP
4 5

PC
6 7

IR
8

9 10

T1
11

T2
12 13

T3
14 15

T4
16 17

T5
18 19

T6
20 21

0x00M1
22

0x01
23

0x02M2
24

0x03
25

0x04M3
26

0x08
27

0xF0M4
28

0xF6
29

0xFEM5
30

0xFF
31

CPU registers

LoadCk

C5

B5

A5

Mem

Addr

Data
S

C

Z

N

(a) Pep/9 CPU data section.

PValid

29 × 62
Microprogram store

ROM

Conditional
branch

multiplexer

Instruction
specifier
decoder

Addressing
mode

decoder

IsUnary
decoder

Branch
function
decoder

Control signals Branch
function

True
target

False
target

Program counter <15>
NZVCS

Instruction specifier

PValidCk
HasPrefetch

 IsPCEven

2

4

5

8

38

9

9

99

62

9

(b) Pep/9 CPU control section.

Fig. 1: Organization of Pep/9, the processor being verified2.

Pep/9 is a pedagogical virtual machine described in Computer Systems, fifth
edition [46], and was recently extended to include a complete microprocessor im-
plementation [33]. This paper describes the Pep9Milli project1 to demonstrate
the implementation of this process. Pep9Milli uses a software verification tool
(Klee) to verify the correctness of the Pep/9 processor via millicode. 75% of the
Pep/9 processor has been verified to meet its specification using this process.

Pep/9 is a 16-bit CISC processor, which features expanding opcodes that
are either unary (one byte) or non-unary (three bytes), and is designed as an
instructional tool to teach computer systems and organization concepts to un-
dergraduates [46]. Computer Systems describes the physical organization (figure
1) of the Pep/9 microprocessor as well as the semantics of the assembly lan-
guage. The full Pep/9 microprocessor has passed many practical unit tests in
the Pep9Micro CPU simulator, but the underlying processor microcode has not
been previously verified—formally or functionally.

This paper and the Pep9Milli project offer the following contributions to
the academic community and the Pep/9 ecosystem:

– Demonstrates how an additional hardware language facilitates processor ver-
ification.

– Describes millicode, a new hardware control language for Pep/9.
– Introduces a verification framework for millicode written in C.
– Verifies a millicode implementation of the Pep/9 processor using the software

verification tool Klee.

Section 2 evaluates microprocessor designs from industry and introduces
Pep/9. Section 3 explores related work on processor verification. Section 4 dis-
cusses levels of abstraction in verification. Section 5 describes how millicode

1 Source code available at: link removed for review
2 Figures adapted from [32], used with permission.

Verification of CISC Processors using Software Verification Tools 3

uses software verification tools to perform verification. Section 6 uses millicode
to verify the correctness of the Pep/9 processor. Section 7 examines the validity
of the verification framework. Section 8 discuss results of verification. Section 9
suggests directions for further research.

2 Background

This section evaluates microprocessor design approaches from industry. It de-
scribes Pep/9’s microcode language, and motivates the introduction of a new
hardware control language, millicode. Lastly, it explores how Pep/9’s microcode
implements its instruction set, facilitating a millicode implementation of the ISA.

2.1 Microprocessor Design

CISC CPU’s (like Pep/9) are controlled through microcode, which is a hardware-
level, machine-dependent control language that coordinates various functional
units of a CPU to perform computations [14, 15, 39, 45]. Each CISC assembly
language instruction is implemented via one or more microinstructions [11, 14].
Code reuse is facilitated between similar instruction implementations by decom-
posing a single assembly instruction into sequences of microinstructions [5].

A single microinstruction is composed of multiple micro-operations, each of
which directs individual CPU resources or functional units for the duration of
an instruction [1]. These micro-operations may reference the state of CPU, like
status registers. For example, the x86 instruction JZ branches if the Z flag is
set [42], therefore some microinstruction implementing JZ must evaluate a condi-
tional branch based on the value of Z. Dependence on CPU state to determine the
outcome of a microinstruction is termed residual control [15]. Reliance on pre-
vious state makes processors more difficult to verify since the verification model
must extend beyond microcode to include processor state [45]. Due to residual
control, verification requires a holistic view of the system; both hardware state
and microcode semantics must be modeled.

Interposing an additional level between microcode and hardware (often termed
nanocode or millicode) streamlines and structures code at both levels of abstrac-
tion [21, 30, 45]. In a multi-level control scheme, a single assembly language in-
struction is implemented by one or more microinstructions, each of which in turn
is implemented by one or more nanoinstructions. Extra design overhead may be
incurred specifying interactions between microcode, nanocode, and hardware,
but practical experience with Nanodata’s QM-1 architecture indicate additional
abstractions ease formal verification attempts [45].

As the technology implementing logic gates has developed, microproces-
sor organization has evolved. Access time to microcode ROM used to be very
high [23]; thus incentivizing schemes that maximized microcode ROM utilization.
These schemes included overlapping microcode execution (parallel microcode)
and highly compressed microinstruction formats [39]. Overall monetary cost
of early computers encouraged dynamic microprogramming, which allowed end

4 Author(s) information removed for review

Fig. 2: Pep/9 microcode fragment incrementing the program counter (PC) by
1. Neither the reference to PC nor the increment size are obvious.

users to modify a chip’s microcode after fabrication [15, 43]. Improvements in
ROM speed [25] and reduced expense [23] have proven user microprogramming
untenable, and it never gained widespread adoption [5]. For better or worse, mi-
crocode has become highly proprietary, read-only, and only temporarily patch-
able at runtime to fix bugs and security vulnerabilities [11,31].

2.2 Pep/9 Microcode

Only the CPU’s data section was described in the original Pep/9 specification
[46]; the control section was omitted, meaning the processor was only capable
of executing code fragments without branches. Later works implemented the
missing control section from the Pep/9 specification [32,33]. The control section
augments the microcode to allow for conditional and indirect branches. Using
this augmented microcode, a complete implementation of the instruction set
architecture (ISA), was written in microcode [33]. Design of a control section
and microcode program unites various levels of abstraction within the Pep/9
virtual machine. However, the microcode is unverified, and provides no formal
guarantee of correctness. Appendix A provides additional details on Pep/9’s
architecture and organization.

Pep/9’s microcode directs individual circuits to route data through the pro-
cessor to specific registers. Additionally, every microcode instruction explicitly
specifies a branch (either conditional on processor state or unconditional) to
successors instructions. Microcode is complex to reason about, as off-by-one
arithmetic errors are not immediately visible. It contains only register numbers,
not recognizable names or constant values, compounding the difficulty in finding
errors. Additionally, microprogrammers must mentally track memory bus state;
state which may change between cycles. A microcode program demonstrates the
complex process of incrementing the program counter in figure 2. Microcode al-
lows for the activation of nearly arbitrary combinations of circuits, which leads
to high degrees of micro-operation parallelism. However, this power and flexi-
bility comes at the cost of legibility. Other papers containing (short) microcode
snippets appear to corroborate that microprogramming is non-trivial for other
architectures [2, 19,27,28].

Pep/9 is accessible for user microprogramming, making it unusual amongst
modern processors. User microprogramming allows exploration of low-level CPU

Verification of CISC Processors using Software Verification Tools 5

Is	PC	even?

				IR	:=	Mem[PC]
Prefetch	:=	Mem[PC	+1]

Is	Prefetch	Valid?

IR	:=	Prefetch IR	:=	Mem[PC]

Is	Instr.
Unary?

No

Bold	Text:	Uses	indirect	branches
Blue	Highlights:	Verified	in	§6.2
Green	Highlights:	Verified	in	§6.3
Purple	Highlights:	Partially	verified	in	§6.4

Is	Prefetch	Valid?

		OS<hi>	:=	Mem[PC+1]
	OS<lo>	:=	Mem[PC+2]

	OS<hi>	:=	Prefetch
								OS<lo>	:=	Mem[PC+1]
						Prefetch	:=	Mem[PC+2]

Decode
Operand
Value

Decode
Instruction

Execute	Instruction Exception	or
STOP?

Halt	Processor

Yes

No

Yes

Yes

NoYes

No

Start

Fig. 3: Organization of Pep/9 instruction cycle.

details through examples ranging in complexity from adding two registers to-
gether to implementing a new instruction set. However, microcode is difficult
validate as no off-the-shelf tools that integrate with it.

2.3 Pep/9 Instruction Cycle

Most computers implement individual instructions in their instruction set us-
ing a sequence of fetch—decode—execute stages [23]. These collective stages are
termed the instruction cycle. Pep/9 implements the same three-stage instruc-
tion cycle to implement a single instruction in microcode. These stages repeat
indefinitely until an exception is raised or a STOP instruction is encountered.

These three stages require 344 lines of microcode in total to implement. Fig-
ure 3 shows a high-level block diagram of Pep/9s instruction cycle3. No existing
verification tools, either open source or proprietary, target the Pep/9 architec-
ture. This paper describes the development of a new verification environment
for the Pep/9 processor.

3 To avoid a lengthy discussion about the implementation, those curious are referred
to sources describing the processor [32,46].

6 Author(s) information removed for review

3 Related Work in Processor Verification

This section explores a history of processor verification, focusing on promising
approaches from Rockwell [20, 34]. It also provides a high level overview of one
form of verification, symbolic execution.

3.1 Microprocessor Verification

Since the dawn of processor development, researchers have been devising meth-
ods to verify processor correctness. Early verification attempts utilized formal
methods like Hoare logic and mechanical theorem proving [9, 35, 43, 45]. Al-
most all of these methods were plagued by difficulties in creating generalized
proof mechanisms for new processors. For example, any minor change to the
Nanodata’s QM-1 architecture would require the creation of a new proof/logic
system [45]. Out of these early attempts, companies such as Centaur [14,18,26],
IBM [17,19,30], Intel [2,3,7,16,22], and Rockwell [20,34] developed and adopted
different verification methods.

Rockwell subjected two processors, AAMP5 and JEM1, to a mixture of func-
tional and formal verification [20, 34]. These processors are relevant because
they are on a similar scale to Pep/9. The Advanced Architecture Microproces-
sor (AAMP5) is a CISC stack machine intended for embedded systems [34].
Designed for ease of translation from high-level languages (such as Ada) to as-
sembly language, it features a 2-stage pipeline with a 24-bit address space. The
more advanced 32-bit JEM1 processor is the world’s first Java microprocessor
and is capable of executing any instruction specified by the Java Virtual Ma-
chine (JVM) [20]. The JEM1 is a microprogrammed computer whose ISA is a
superset of the JVM.

Using the Prototype Verification System (PVS), Rockwell created formal
proofs of correctness to verify portions of AAMP5’s microcode [34]. AAMP5
was designed to be backwards compatible with earlier processors in the CAP-
S/AAMP family, which existed before Rockwell’s early published attempts at
verification. Miller et al. verified a select handful of instructions broadly rep-
resenting the instruction set. When Rockwell later spun up development of the
JEM1 processor, they decided to transition from formal verification to functional
verification [20]. In retrospect, formal verification of the AAMP5 was incredibly
costly for the marginal benefit derived from processor verification. Rockwell drew
from their experience in PVS and modeled the nascent JEM1 processor in PVS.
Instead of concocting formal microcode proofs, they performed symbolic simu-
lation of the processor and its 1,689 lines of microcode within PVS. Experienced
microprogrammers reviewed the output of symbolic simulation by hand and
discovered multiple rarely encountered defects in the microprogram. Rockwell’s
semiformal verification was able to verify larger percentages of the JEM1 than
had previously been accomplished using formal methods.

Verification of CISC Processors using Software Verification Tools 7

3.2 Symbolic Execution

Symbolic execution is a tool to explore programs using algebraic manipulations
of program variables [4,9]. Tools find assertions and exceptional conditions sym-
bolically and provide a concrete set of inputs that lead to the erroneous states [7].
Symbolic manipulation of program variables helps maximize the number of pro-
gram states explored in a bounded amount of time [6]. From a user’s perspective,
tracing a failing condition to a concrete input allows for easier debugging.

Symbolic execution tools typically are designed to handle large state spaces
efficiently [2]. But, they are a non-exhaustive form of verification. For certain
classes of problems, especially those without complex branching, infinite loops,
or small state spaces, symbolic execution can perform exhaustive verification.
However, problems with large state spaces may not be explored exhaustively.
Instead symbolic execution tools will explore as many program states as possible
under time or resource constraints, prioritizing unexplored and “interesting”
states. No formal guarantee of total correctness is provided in the non-exhaustive
case. Tools such as Klee4 are able to generate high degrees of test coverage
(over 80%) for large application/library codebases exceeding 100,000 lines of
code (e.g., GNU COREUTILS [6]). With the advancements in the field of symbolic
execution over the last twenty years, tools are capable of exploring programs
(and consequently, state spaces) at least an order of magnitude larger than what
was attempted with the JEM1.

Based on successful verification attempts using symbolic execution, and con-
tinued advancements in the field, symbolic execution will be the tool of choice to
perform verification of the Pep/9 processor. The verification goal of Pep9Milli
is to prove that Pep/9’s hardware implements register transfer language (RTL)
specification of the Pep/9 instruction set. Before verification of the processor
implementation, a new hardware control language is motivated and described.

4 Motivation For Millicode

This section explores current approaches to verifying processors via HDL im-
plementations or analyzing microcode. Shortcomings in these approaches are
discussed. Lastly, it introduces millicode as a new hardware abstraction for ad-
dressing those shortcomings.

4.1 Industry Verification at the Logic Gate Level

An approach to processor verification is to directly verify a processor’s logic gate
(or HDL) implementation. For microcoded processors, hybrid methods combine
hardware-microcode verification have been used successfully in industry repeat-
edly [2,16]. Simulation across multiple levels of abstraction, including hardware-
software co-verification has success in industry [19]. However, these tools will
not work for processors lacking a HDL description, which occurs at early stages

4 See https://klee.github.io/

https://klee.github.io/

8 Author(s) information removed for review

Millicode Microcode Logic gate
Instruction Set

Architecture

Most Abstract Least Abstract

Fig. 4: Levels of abstraction in a processor. Millicode sits between microcode and
the ISA.

in the design process, or for processors not meant for implementation in sili-
con (such as Pep/9). For these classes of processors, different methods must be
developed.

4.2 Evaluating Pep/9 Microcode

Pep/9’s microcode is capable of implementing a Turing-complete assembly lan-
guage. However, it is difficult to develop and far more difficult to debug—
difficulty aggravated by the presence of residual control. Case in point, Pep9Micro’s
microcode5 contains more comment lines than lines of executable microcode.
Creating a verification model at this level is difficult due to high levels of micro-
operation parallelism. Translation from unstructured microcode to structured
high-level languages like C may be difficult [36].

Microcode is difficult to reason about, providing further motivation for addi-
tional layers of abstraction. Difficulty in understanding the function of microcode
segments obscures the goals of verification. By reducing the burden to design con-
trol programs, enforcing more regular control flow, and reducing micro-operation
parallelism, millicode provides a more suitable abstraction than microcode for
large-scale hardware programming and verification. Even if the technical hurdles
of modeling Pep/9 at the microcode level in a verification environment could be
overcome, the goal of using layered abstractions to ease design and aid verifica-
tion would not be fulfilled, indicating the need for a new level of abstraction.

4.3 Introducing Millicode

In system-on-chip (SoC) designs, simulation and verification are performed at
multiple levels of abstraction [37]. For example, SoC simulations choose between
multiple levels of abstraction, such as modeling bus architectures at a detailed
level of individual pins and bus cycles (pin accurate, bus cycle accurate (PA-
BCA)) or by more abstractly modeling entire bus transactions (transaction level
modeling (TLM)) [8,37]. Higher levels of abstraction are available at early stages
in system design, as they do not require finalized implementation and floorplan
details. Early verification is advantageous since defects are cheaper to address
when discovered earlier in the project cycle [41].

In a parallel to SoC designs, Pep9Milli introduces a new hardware control
level, termed millicode. The millicode level of abstraction sits between microcode
and the instruction set architecture (see figure 4). Just as the TLM level allows

5 Microcode available at: link removed for review

Verification of CISC Processors using Software Verification Tools 9

MemRead(8 , 1)
RB9 := ADD(MDR, RB9)
MemRead(7 , 1)
RB9 := ADD(MDR, RB9)
MDR := IDENT(RB9)
MemWrite (9)

Fig. 5: Millicode containing memory load and store operations.

for easier verification and simulation than the PA-BCA level, more abstract
millicode should provide the same benefit over lower-level microcode. Millicode
is easier to read, use, and verify than microcode. Multi-level control systems exist
in practice [21,30,45] and have been subjects of successful verification attempts.
Processor designs benefit from layering abstractions, and so should verification.

The overarching design goal of the millicode language is to abstract away
complexities of the microcode implementation while retaining the same level of
expressiveness and control as microcode. Each millicode instruction encodes one
action, an optional symbolic identifier, and a branch to specifying the succes-
sive millicode instruction. An action is either a register-register computation, a
load from memory, a store to memory, or a no-operation. Actions may induce
side effects, such as modifying status flags. To perform a sequence of actions,
multiple lines of millicode must be used—millicode actions may not be inter-
leaved. Figure 5 contains a millicode sample. Millicode sacrifices one power of
microcode, which is the ability to perform multiple non-conflicting computa-
tions at once. Additionally, program pre- and post-conditions are not encoded
directly in millicode; they are added manually to the C or microcode translations
of the millicode. There are currently no automated millicode translation tools;
Pep/9’s RTL was translated by hand into millicode, which is in turn verified
using software verification tools.

Millicode is an off-chip control language; it has no corresponding on-chip
control subsystem, which differs from industry [21,45]. Instead, millicode assem-
bles to microcode. Millicode’s lack of parallelism makes it more structured than
microcode, and it will rely on an optimizing assembler to achieve the same levels
of efficiency as microcode (see §5.2). From structured millicode it is easier to
generate a structured high-level language representation, which may be fed to a
software verification tool. Millicode brings additional structure to hardware con-
trol. As a hardware control language, millicode is processor-specific like a hard-
ware description or microcode. Sitting at a high level of abstraction, millicode
should be easier to create from an RTL specification than HDL or microcode.
Like TLM in SoC designs allows for early verification, millicode provides the
same benefit to hardware control.

10 Author(s) information removed for review

5 Verifying and Translating Millicode

This section explores how millicode uses software tools to perform verification,
thus verifying the processor implementation. It describes the design of the ver-
ification environment, which is constructed in the C language using Klee. It
describes the translation from millicode to C. It highlights a major limitation of
Pep9Milli, which is the lack of an automated millicode assembler.

5.1 Building a Verification Environment

The AAMP5 microprocessor [34] is more complex than Pep/9, but is still roughly
comparable. Successes with AAMP5 indicates that it should be possible to ver-
ify Pep/9, whose design also ignored verification ease. Success with symbolic
execution on the JEM1, which contains roughly four times as many microcode
lines as Pep/9 [20], indicates that symbolic execution is an appropriate tool for
a processor the size of Pep/9’s. ISA and microarchitectural designs of AAMP5
and JEM1 parallel Pep/9, and thus the applied verification techniques (namely,
symbolic execution) are prime candidates for Pep/9.

Many tools exist to perform symbolic simulation of source code programs,
such as Klee [6], Kite [44], SED [24], and others. Each tool targets different source
code languages. The entire Pep/9 program suite is implemented in C++, and in-
cludes a microcode simulator called Pep9Micro. Choosing a verification tool that
operates on either C/C++ allows easy translation of existing components from the
C++ model to form the basis of Pep9Milli’s verification environment. Successful
verification using the Pep9Milli indirectly increases the level of correctness in
the C++ code base, since the implementations are related.

Within the verification environment, symbolic execution is used to explore
CPU state space by initializing values symbolically for registers, memory lo-
cations, and status bits, effectively storing all possible values in each location.
Individual millicode programs may constrain initial values by initializing some
registers to concrete values. Using symbolic execution to execute millicode (that
has been translated to C) symbolically explores all possible subsequent states
reachable from initial conditions. Testing millicode from all possible initial states
is the primary benefit derived from symbolic execution within Pep9Milli, and
sets Pep9Milli’s testing apart from a limited set of unit tests. If symbolic ex-
ecution terminates, it is able to exhaustively prove that a program meets its
post-conditions from all starting states, proving the program correct. Showing
that all starting states of the processor fulfill post-conditions derived from the
RTL verifies the that the millicode correctly implements the instruction set.

The process of abstracting away the complexities of the hardware may lose
important details. For example, Pep/9’s memory model dictates that memory
access may induce side effects on account of its memory-mapped IO system.
Reading from a memory address (i.e. memory-mapped input devices) multiple
times may yield distinct values. Memory-mapped IO requires repeated writes
of the same value to the same memory address to be considered distinct opera-
tions. Writing to memory is not idempotent. Pep9Milli’s memory model assumes

Verification of CISC Processors using Software Verification Tools 11

memory access to be side-effect free, and that repeated writes are idempotent.
Accessing additional or incorrect addresses in millicode programs may trigger
deleterious effects by inadvertently activating memory-mapped IO components.

5.2 Translating Millicode

A major limitation of the Pep9Milli project is that no automated translation
tool exists to convert millicode to C or millicode to microcode. Presently, these
translations must be performed by hand. However, millicode is designed to be as-
sembled via a future milli-assembler. The milli-assembler would emit a microcode
representation for loading to Pep/9’s processor in addition to a C representation
for the purposes of verification. The C representation is fed to a symbolic exe-
cution engine named Klee (the verification process is explored in §6). Millicode
is designed such that any valid millicode program has a corresponding valid
microcode program. This prevents flawed analysis where the CPU’s microcode
must perform impossible operations (e.g., solve the halting problem) to perform
the actions specified by the millicode.

In the C model, there is a corresponding function for each part of a milli-
code instruction (i.e., perform an action, update the program counter). Each
milli-instruction is implemented as a C function, whose body contains the corre-
sponding translation. All C functions are placed in a jump table. At each step, the
jump table is indexed by the microprogram counter, and the associated function
is invoked. This process repeats until the program terminates, the user aborts
verification, or a maximum number of millicode steps has been exceeded.

Pre- and post-conditions are not directly written in millicode, as the language
has no facilities to encode them (see §9). However, Pep9Milli provides function
stubs to execute pre-conditions prior to execution and verify post-conditions
after termination. These stubs must be manually filled in with pre- and post-
conditions based on the source program’s specification.

As millicode is an off-chip control subsystem, its verification does not im-
mediately signal the correctness of the processor. Verified millicode must be
assembled to machine-executable microcode. The resulting microcode is loaded
into the Pep/9 processor, and only then is the processor known to implement
the RTL of its instruction set correctly. Without loading the translation of the
verified millicode, no claim about the processors correctness may be made.

5.3 Verifying Pep/9 using Millicode

Verification of the Pep/9 processor requires either verifying all three stages of
the instruction cycle (see §2.3) in unison or verifying stages independently and
connecting the verified segments via pre- and post-conditions. Pep/9’s RTL was
partially translated to millicode, maintaining the same structure as Pep/9’s mi-
crocode. The microcode implementation of the instruction-operand fetch, and
operand decode stages were translated to millicode in their entirety, while the
microcode implementing the instruction fetch unit was only partially translated

12 Author(s) information removed for review

(see layout in figure 3). Microcode instructions were split and collated by mil-
licode operation type, which is necessary since microcode allows for parallelism
while millicode does not. Data dependencies between microinstructions were re-
spected, and common microinstruction subsequences were de-duplicated. Pre-
and post-conditions for each stage were constructed from the RTL of Pep/9 [46].
The translated millicode serves as the basis for verification.

5.4 General applicability

Millicode and its verification environment as described above is designed specif-
ically for the Pep/9 processor. The language is not immediately portable to a
generic CISC with a different organization. However, the technique of creating
an additional layer of abstraction to facilitate verification is portable. In SoC
communications, techniques of layering abstraction have had great success re-
cently [38], confirming older results in processor design [45].

Where this process differs from traditional abstractions is in its utilization
of software verification tools to perform hardware verification. Instead of con-
structing a custom simulator [19] or creating a new SMT interface [3], existing
software verification tools are reused. The key “trick” is creating a language that
facilitates translation to a high-level language, such as C, and verifying the high-
level representation. While this requires faith in the translation tools, verified
compilation is a well-studied field [10,12].

6 Verification Results

In this section, four programs are translated from millicode to C and corre-
sponding verification results are shown. The first program computes the first
14 Fibonacci numbers using main memory to store intermediary results. This
programs confirm that the verification environment is capable of verifying trivial
programs, improving confidence that Pep9Milli can verify more complex pro-
grams. Each of the three remaining programs verify a stage of Pep/9’s instruction
cycle (see figure 3). Each stage—the instruction-operand fetch, operand decode,
and the instruction execution units—depends on the correctness of all previous
components, so they are presented in series.

Symbolic execution allows all registers and memory locations to be initialized
symbolically, effectively filling each location with every possible value (see §5.1).
By executing code fragments from all possible starting states, Klee is able to
show that post-conditions hold for any possible execution of a millicode program.

6.1 Computing the First 14 Fibonacci Numbers using Dynamic
Programming

The first program to be verified computed the first 14 Fibonacci numbers6. To
confirm the correctness of the memory model, intermediary results were cached

6 Fib(13)=233, which is the largest Fibonacci number fitting in a one-byte register.

Verification of CISC Processors using Software Verification Tools 13

MDR := IDENT(0) // MDR = F(0) = 0
MemWrite (0) // Memory [0] = MDR
MDR := IDENT(1) // MDR = F(1) = 1
MemWrite (1) // Memory [1] = MDR
RB1 := IDENT(2) // Loop v a r i a b l e ”n ” .

loop : RB2 := SUB(RB1, 2) // Fetch F(n−2).
MemRead(RB2, 1) // MDR = F(n−2)
// I n i t i a l va lue o f RB0 i s F(n−1)
RB0 := ADD(MDR, RB0)
MDR := IDENT(RB0) // MDR = F(n)
MemWrite(RB1) // Memory [n] = MDR
RB1 := ADD(RB1, 1) // n = n + 1
SUB(RB1, 1 3) ; NZ
i f LE goto next e l s e loop

next : STOP()

Fig. 6: Computing the first 14 Fibonacci numbers via a loop using register-
register, load, and store operations

in main memory. The algorithm constructs a 14-entry array starting at an ar-
bitrary (i.e. Klee chosen) address in memory. For each Fibonacci number, the
two previous Fibonacci numbers are loaded from memory, summed, and written
back to the next location memory, which is a simple dynamic programming al-
gorithm. After initializing Fib(0) = 0 and Fib(1) = 1, the remaining numbers
may be computed using a loop, testing the ability of the verification model to
perform conditional branching. Figure 6 depicts the algorithm.

The millicode program was translated by hand to C. Hand-constructed post
conditions asserted that each memory addresses contained the correct values af-
ter execution. Klee required 63 seconds to verify that the program was correct.
It executed a total of 1,457,582 statements across 29 unique paths through the
program. Memory addresses in Pep/9 are words (two bytes), but the ALU only
operates on single bytes. Therefore, chained byte additions are required to per-
form a single address computation. Upon examining Klee’s call tree, many of
the unique paths occurred due to unsigned overflow on chained byte arithmetic.
Successful verification of the Fibonacci algorithm indicates the verification model
is sound using memory loads and stores, conditional branching, and multi-byte
arithmetic.

6.2 Instruction-Operand Fetch

The instruction-operand fetch unit performs two jobs. First, it loads an instruc-
tion specifier from memory into the instruction register (i.e., register IR). If the
particular instruction is unary, the fetch stage is finished. For non-unary instruc-
tions, which require a two-byte operand, an additional operand fetch is needed

14 Author(s) information removed for review

to load the operand into the operand specified (OS) register. To determine if
an instruction is unary, a special 256-entry decoder circuit (“IsUnary Decoder”
from figure 1b) is used. The circuit takes in the value of the instruction specifier,
and outputs a “1” if the instruction is unary or “0” otherwise. Output from the
decoder is used to make a branch decision, introducing a level of indirect branch-
ing not present in the previous example. After fetching a single instruction and
operand, the program terminates.

A further complication arises due to the design of the Pep/9 memory bus.
Two bytes are always fetched during each memory read; however, instructions
are either one or three bytes (i.e., not a multiple of 2). Memory access is slow, so
the “extra” byte is placed in a special prefetch register. If a following memory
access references the prefetch, the memory access is bypassed and the prefetch
is used A status bit maintains the validity of the prefetch, which introduces a
level of residual control persisting between ISA level instructions.

Pep/9’s RTL was translated by hand to millicode, which in turn was hand-
translated to C. Verification conditions were derived from Pep/9’s RTL and tex-
tual description of the processor [46]. Verification required three seconds to com-
plete, during which a total of 16 unique paths covering 74,382 statements were
explored.

6.3 Operand Decoding

After non-unary instructions have fetched their operands, the operand must be
further processed. This occurs when the operand specifies a memory address or
stack offset. The operand decode unit interprets the operand for all non-unary
instructions. The post-conditions of the operand decode unit are that register
T5 contains the address from which the operand value was fetched, and register
T6 contains the fully decoded operand value. After fetching a single instruction
and operand, the operand is decoded, and the program terminates.

The combined instruction-operand fetch unit was augmented with millicode
implementing operand decoding. Millicode for the operand decode unit was
translated by hand to C, and the source program was manually annotated with
verification conditions taken from the Pep/9 RTL. Verification of this section
took nearly four hours—4,500 times longer than the previous instruction-operand
fetch unit. Klee found 4,026 unique paths through the program by executing
13,378,289 statements. State space explosion most likely occurred to the addi-
tion of multiple level of indirect lookups and pointer arithmetic. The verification
of the first seven addressing modes took nearly an hour, but addition of the
final mode “Stack Deferred Indexed” (SFX) inflated time by an additional three
hours. SFX addressing performs two separate memory lookups and performs
three computations involving three registers and two memory values, generating
a high number of possible paths through the segment.

Further augmenting this unit with the instruction execution unit would be
uneconomical due to high verification time per run. Instead, verification of the
instruction execution unit will solely rely on the post-conditions of operand de-
code unit, which describe the values held in registers T5 and T6.

Verification of CISC Processors using Software Verification Tools 15

6.4 Instruction Execution

The instruction execution unit was verified as a separate component from the
combine instruction-operand fetch/decode unit, due to the long run time of the
previous millicode program. The instruction execution unit assumes as a pre-
condition that the instruction and (if present) the operand have been loaded to
the IR and OS register. If an operand is present, registers T6 and T5 contain the
fully decoded operand value and address of the decoded operand value, respec-
tively. These are the post-conditions of the instruction-operand fetch/decode
unit. Using the composition rule from Hoare logic, the combined instruction-
operand fetch/decode unit may be logically composed with instruction execu-
tion unit since they share post-/pre-conditions. Therefore, verifying the units
separately is still a valid method of determining processor correctness. The in-
struction execution unit’s post-conditions are drawn directly from the RTL of
Pep/9. The bulk of the verification effort in the instruction execution unit in-
volves checking if status bits are set correctly at the end of each instruction.
This is in contrast to previous stages, where status bits are largely ignored and
the majority of the work performed modifies register values. After executing a
single instruction the program terminates.

Due to time constraints, millicode translations of instruction implementations
were only created for 38 of 57 instructions. Klee verified that these selected in-
struction implementations were correct in 30 seconds by exploring unique 157
paths across 205,680 statements. Great difficulty was encountered with comput-
ing the correct values for status bits, as it required tracking CPU state over time,
as well as performing bit-arithmetic. Issues translating bit arithmetic from the
C++ implementation required constructing new logical expressions to describe
values of status bits.

7 Validity of Results

Because all previous verifications of the Pep/9 architecture succeeded without
errors, is it possible that the verification environment is flawed and always returns
true? This section presents a new error in microcode that was discovered by the
verification process. It explores injection of known and new faults into previously
correct millicode segments. This section addresses the validity of exploring single
instruction sequences.

7.1 Faults Detected

A new error was detected in existing microcode while verifying the LDBr instruc-
tion. The RTL specifies that the LDBr instruction must set the N(egative) bit to
zero. The millicode implementation sets N correctly. When the LDBr millicode
was compared to “equivalent” microcode, structural differences suggested that
the microcode incorrectly modified N. The microcode was confirmed to be de-
fective, and a patch was issued. The bug was not previously reported, making

16 Author(s) information removed for review

Fig. 7: Post-condition errors (in red) indicating Klee verification failure.

it the first CPU fault definitively detected by software verification. Even though
millicode lacks automated translation tools to microcode, comparative analysis
between languages still detects latent errors.

7.2 Injecting Known Faults

In early versions of the microcoded CPU simulator for Pep/9 (named Pep9Micro),
multiple microcode errors prevented the processor from implementing the in-
struction set correctly. Two such errors plagued the negate (NEG) family of in-
structions, which perform the two’s complement operation on a register. These
errors remained undiscovered for a fairly long time (around 6 months), since
the relative rarity of the NEG instructions compounded with the rarity of the
exceptional conditions. Showing that Pep9Milli’s verification can detect errors
like these raises confidence in the verification process as a whole.

The two bugs affecting the NEG instructions occurred within the status bits.
In both cases, one-byte operations were improperly chained to perform a word
operation. In the first case, the carry bit from the low order byte was not pre-
served, rendering the high order byte computation incorrect in some cases. In the
second case, the Z(ero) bit would be set if only the high order byte of the word
was zero, when it should only be set if both bytes are zero. The millicode of the
instruction execution stage was modified to contain these incorrect instruction
implementations, but the post-conditions of the stage adhered to the RTL. Klee
correctly generated errors, and verification failed (figure 7). In under an hour of
development time, Pep9Milli’s verification was able to discover an error that
existed in Pep9Micro for many months.

7.3 Injecting New Faults

In addition to known errors detected for Pep9Micro’s development, three new
classes of errors were introduced. These errors were injected into the instruction
fetch, operand fetch, and operand decode units. The program counter was decre-
mented rather than incremented in the instruction fetch unit. This was achieved
by swapping an “ADD” action for a “SUB” action. Branch targets were reversed
in the operand fetch unit, causing execution to follow the wrong path. In the
operand decode unit, a lookup table was modified so that instructions using
“SFX” addressing would be decoded as using “I” addressing.

The first class of error, action substitutions, was injected into the operand
fetch unit. After swapping an “ADD” action for a “SUB” action, Klee detected

Verification of CISC Processors using Software Verification Tools 17

that some paths through the instruction fetch unit set the program counter
incorrectly. This class of error was common in design of the overall millicode
program (“Am I supposed to use a shift or a rotate here?”), so Pep9Milli’s
ability to catch this common class of errors is beneficial.

The second class of errors, branch target reversals, was injected into the in-
struction fetch unit. In the development of Pep9Milli, branch targets were acci-
dentally reversed multiple times, causing an incorrect path to be taken through
the program. The already-verified operand fetch unit was modified with incorrect
branch targets. Unary instructions followed the non-unary path, and non-unary
instructions followed the unary path. In both cases, Klee correctly found that
this modification violated the post-conditions for either branch.

The third new error class, decoder entry errors, was injected into the operand
decode unit. The operand decode unit uses a lookup table to select the correct
addressing mode implementation for each instruction. All entries for “SFX” ad-
dressing were modified to decode as “I”. Klee generated assertion errors in these
handful of cases operands were decoded incorrectly.

Through injection of known and new faults the Pep9Milli verification frame-
work has been shown to detect multiple classes of errors in a program. Addi-
tionally, any erroneous modification to any of the three stages of the instruction
cycle (figure 3) would likely violate the post-conditions of the stage. Once trans-
lated to microcode, Pep9Milli’s verified millicode implementation decreases the
likelihood of bugs in the Pep/9 ecosystem reaching end users.

7.4 Trusting Single Instructions Paths

All verification attempts described thus far only validate a single instruction at
a time. Pep/9 has residual control, meaning state persists between instructions.
Only validating single instructions at a time would seem to leave a large coverage
gap in the correctness of Pep9Milli. Since verifying a single instruction can take
up to 4 hours (§6.3), a more clever approach than applying iterated instruction
executions is needed, as a näıve method may increase state space exponentially.

The solution to this problem stems from the design of the verification envi-
ronment. Klee is allowed to pick all starting register, status flag, and memory
values, within some constraints. For example, some registers are initialized to
constants, and if the prefetch flag is set, then the prefetch register must con-
tain the correct value. While verifying a single instruction, registers may take on
any possible value so as to explore as many states as possible. In the concrete
Pep/9 machine, registers are initialized to well-defined concrete values, such as
0. By allowing any register to have any value, it is as if the current instruction is
at some point in an execution sequence that has evolved processor state to the
current state from the initial state. Each instruction is entirely self-contained,
excepting for the pre-fetch, which is specifically handled using a sequence of
pre- and post-conditions. Evaluating a single instruction is akin to evaluating
the next step of some indefinite instruction sequence. Thus, evaluating a single
instruction is sufficient for validating Pep/9.

18 Author(s) information removed for review

8 Discussion

Successfully verification of the instruction cycle indicates that 38 of 57 instruc-
tions in the Pep/9 instruction set are implemented correctly. The combined
instruction fetch, operand fetch, and operand decode units were verified com-
pletely, while the instruction execution unit has partial results. Although the
results are only partial, they provide a high degree of confidence that the new
millicode correctly implements the Pep/9 instruction set.

At present, no tool exists to automatically translate millicode into a verifiable
C program. Pep9Milli’s millicode was derived by hand from microcode, which is
a process that may introduce errors. Results from verification and fault injection
indicate that if there were errors in the millicode, they would have been caught.
All millicode programs had to be translated by hand to C, and mistakes in the C

program were hard to debug. These millicode programs were only translated to
C, as it was deemed too tedious to translate them to microcode without the help
of an automated milli-assembler. Nevertheless, these hand-translated programs
were still found to meet their specifications. Using an automated milli-assembler
would eliminate translation from microcode to millicode and from millicode to
C as a source of introducing errors.

As stated earlier, Pep9Milli’s model assumes that memory access is side-
effect free. Due to this limitation, a known defect in Pep9Micro’s microcode im-
plementation was missed. For store instructions, additional (incorrect) memory
reads are performed. This bug is well known, so the inability of Pep9milli to
detect it highlights the deficiencies of the side-effect free memory model.

Initially, Pep/9’s word size (which is two bytes) posed an issue while at-
tempting to perform arithmetic. The ALU, modeled at the circuit level, op-
erates on one-byte quantities, which are sourced from the register bank’s 32
8-bit registers. Initial programs (§6.1) used these one-byte operations, so each
millicode operation could be encoded as a single circuit operations. However,
operations on words require chained one-byte arithmetic, and must therefore
reference a series of one-byte registers to generate the requisite operand size.
Pep/9 is a little-endian CPU, whereas the host machine running the verifica-
tion is big-endian. When computing a 16-bit address using circuit operations,
the circuit layer would reverse the byte order, causing the incorrect address to
be generated. This was fixed by moving word-size operations from the circuit
layer to the environment layer. These changes allowed successful verification of
programs operating on word quantities. From a pedagogical perspective, these
more abstract functions belong at the environment level, since the circuit level
does not natively support 16-bit arithmetic.

Even relatively simple millicode programs experience a state space explosion.
The looping implementation of the Fibonacci sequence (figure 6) took around a
minute. Manual loop unrolling indicates that this program requires no more than
24 transitions to terminate, however the call tree indicates that 157 transitions
were taken. The computation loop is visited repeatedly, probably due to arith-
metic overflow on address computation, leading to multiple forks in execution.

Verification of CISC Processors using Software Verification Tools 19

Microcode loops forever—a CPU does not stop executing until explicitly
shutdown—but only finite millicode instruction sequences are considered at
present. Unbounded loops in millicode programs pose a difficulty to Pep9Milli.
If a loop condition is not bounded (e.g. terminates after 13 iterations), verifi-
cation may execute forever. The Pep/9 instruction set contains no instructions
that loop inside the microcode or millicode. However, other instruction sets al-
low looping within an instruction. For example in x86 assembly language, an
instruction can repeated an arbitrary number of times or until a condition is
met. The REP MOVS instruction copies a string from one memory source to an-
other memory destination. This complex behavior is encoded as a single assembly
level instruction [42]. Pep9Micro’s microcode (and thus millicode) is designed to
be modified to implement an arbitrary instruction set, including instruction sets
that include instructions such as REP MOVS. In its present form, Pep9Milli’s veri-
fication model would not be able to verify these other instruction sets. Pep9Milli
is limited to verifying instruction sets similar to Pep/9’s, which is a subset of all
instruction sets that Pep9Micro may implement. In general, Pep9Milli cannot
verify the correctness of arbitrary, looping millicode. This issue may be allevi-
ated by only exploring loops to some upper bound, but this comes at the cost
of exhaustive verification.

Hardware control languages are significantly limited by their tight coupling
to the hardware they describe. Much like microcode, a millicode program is not
capable of driving a generic processor. For each processor to which this paper’s
process of abstraction and software verification is to be applied, a new “milli-
code” language and verification environment will have to be created. Ease of
translation from RTL to millicode means that verification may be applied be-
fore the hardware is finalized. Through layered abstractions, software verification
tools such as Klee are usable in a hardware domain.

9 Further Research

The immediate next step is to create a tool that is capable of assembling milli-
code into Pep/9 microcode as well as verifiable C code. The millicode language is
already defined (see §5.2), so it is a matter of implementation. Generating opti-
mal microcode will require compaction [1,13]; otherwise the microcode generated
by the milli-assembler will be slower than microcode currently deployed in pro-
duction. Additionally, assigning addresses to instructions at both the millicode
and microcode level is an unresolved issue.

Following the creation of a milli-assembler, the next clear goal is to extend
the millicode language to encode pre- and post-conditions. This would cause
verification conditions to accompany the millicode, rather than being a manual
addition to the generated C code. Encoding verification conditions in millicode
would decrease typos and remove the manual translation step as a method for
introducing errors. One major hurdle is devising a method to programmatically
refer to CPU states across time, which is not modeled in the millicode language.

20 Author(s) information removed for review

As discussed in §5.1, Pep9Milli’s address model assumes that memory access
is side-effect free, and that memory writes are idempotent. These simplifying
assumptions are incongruent with the reality of Pep/9’s memory-mapped IO
system, which requires side-effects to function. A form of read/write tracking
needs to be implemented in the verification model. Next, the millicode language
needs to be extended to specify which memory addresses should be accessed in
a particular block. With these two components in place, Pep9Milli will be able
to verify memory access in the presence of side effects.

10 Conclusion

Verification and design of microprocessors has been an active area of research
in academia and industry for half a century. Successive advancements in micro-
processor designs have created increasingly powerful microprocessors. Complex
microarchitectures have evolved to squeeze every bit of performance out silicon.
Despite advances, researchers and consumers still ask the same question ”Does it
work in all cases?”. It turns out, the answer may be ”no!” as discovered by Intel
with the Pentium’s FDIV bug [22]. However, verification techniques can validate
interesting scenarios and improve overall microprocessor design and quality.

This paper introduces a process for using open-source software verification
tools for CISC processor verification, which functions in situations that existing
hardware verification tools are unequipped to handle. The approach consists of
three steps:

1. Create a new, more abstract, off-chip hardware control language. This lan-
guage compiles to an existing on-chip hardware control language, as well as
a high-level language like C.

2. Create a verification environment in the high-level language, and leveraging
existing software verification tools to verify the high-level language imple-
mentation correctly implements the RTL.

3. If verification succeeds, load the hardware control language program (i.e.,
microcode) on to the processor. This microcode verifiably implements the
RTL of the instruction set.

The approach was demonstrated by verifying the implementation of the Pep/9
processor using the Pep9Milli project. Pep9Milli introduced a programming
abstraction for Pep/9’s hardware, millicode, that allows for simultaneous trans-
lation to microcode and C. Several millicode examples were verified to meet their
specification using symbolic execution on the C translation. In total, 75% of the
Pep/9 CPU is verified to be correct. For CISC processors lacking a hardware
description, the methodology outlined in this paper allows for verification in
circumstances that were previously difficult or impossible.

References

1. Ahmad, I., Dodhi, M.K., Saleh, K.A.: An evolutionary technique for lo-
cal microcode compaction. Microprocessors and Microsystems 19(8), 467 –

Verification of CISC Processors using Software Verification Tools 21

474 (1995). https://doi.org/https://doi.org/10.1016/0141-9331(96)82011-4, http:
//www.sciencedirect.com/science/article/pii/0141933196820114

2. Arons, T., Elster, E., Ozer, S., Shalev, J., Singerman, E.: Efficient symbolic simu-
lation of low level software. In: 2008 Design, Automation and Test in Europe. pp.
825–830 (Mar 2008). https://doi.org/10.1109/DATE.2008.4484776

3. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman,
E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal verification of backward com-
patibility of microcode. In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided
Verification. pp. 185–198. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

4. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A sur-
vey of symbolic execution techniques. ACM Comput. Surv. 51(3) (May
2018). https://doi.org/10.1145/3182657, https://doi-org.proxy.library.georgetown.
edu/10.1145/3182657

5. Bauer, S.M.: Bell labs microcode for the ibm 360/67. In: Proceedings of the 8th
Annual Workshop on Microprogramming. pp. 40–44. MICRO 8, ACM, New York,
NY, USA (1975). https://doi.org/10.1145/800148.804859, http://doi.acm.org/10.
1145/800148.804859

6. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. pp. 209–
224. OSDI’08, USENIX Association, Berkeley, CA, USA (2008), http://dl.acm.
org/citation.cfm?id=1855741.1855756

7. Cadar, C., Sen, K.: Symbolic execution for software testing:
Three decades later. Commun. ACM 56(2), 82–90 (Feb 2013).
https://doi.org/10.1145/2408776.2408795, http://doi.acm.org/10.1145/2408776.
2408795

8. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: Proceedings of the
1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. pp. 19–24. CODES+ISSS ’03, Association for Computing
Machinery, New York, NY, USA (2003). https://doi.org/10.1145/944645.944651,
https://doi-org.proxy.library.georgetown.edu/10.1145/944645.944651

9. Carter, W.C., Joyner, W.H., Brand, D.: Symbolic simulation for correct ma-
chine design. In: 16th Design Automation Conference. pp. 280–286 (Jun 1979).
https://doi.org/10.1109/DAC.1979.1600119

10. Chlipala, A.: A verified compiler for an impure functional language. In: Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 93–106. POPL ’10, Association for Computing Ma-
chinery, New York, NY, USA (2010). https://doi.org/10.1145/1706299.1706312,
https://doi.org/10.1145/1706299.1706312

11. Daming D. Chen, G.J.A.: Security analysis of x86 processor microcode (2014),
https://www.dcddcc.com/docs/2014 paper microcode.pdf

12. Dave, M.A.: Compiler verification: A bibliography. SIGSOFT Softw. Eng. Notes
28(6), 2 (Nov 2003). https://doi.org/10.1145/966221.966235, https://doi.org/10.
1145/966221.966235

13. Davidson, Landskov, Shriver, Mallett: Some experiments in local microcode com-
paction for horizontal machines. IEEE Transactions on Computers C-30(7), 460–
477 (Jul 1981). https://doi.org/10.1109/TC.1981.1675826

14. Davis, J., Slobodova, A., Swords, S.: Microcode verification – another piece of the
microprocessor verification puzzle. In: Klein, G., Gamboa, R. (eds.) Interactive
Theorem Proving. pp. 1–16. Springer International Publishing, Cham (2014), https:
//www.kookamara.com/jared/2014-itp-ucode.pdf

https://doi.org/https://doi.org/10.1016/0141-9331(96)82011-4
http://www.sciencedirect.com/science/article/pii/0141933196820114
http://www.sciencedirect.com/science/article/pii/0141933196820114
https://doi.org/10.1109/DATE.2008.4484776
https://doi.org/10.1145/3182657
https://doi-org.proxy.library.georgetown.edu/10.1145/3182657
https://doi-org.proxy.library.georgetown.edu/10.1145/3182657
https://doi.org/10.1145/800148.804859
http://doi.acm.org/10.1145/800148.804859
http://doi.acm.org/10.1145/800148.804859
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
https://doi.org/10.1145/944645.944651
https://doi-org.proxy.library.georgetown.edu/10.1145/944645.944651
https://doi.org/10.1109/DAC.1979.1600119
https://doi.org/10.1145/1706299.1706312
https://doi.org/10.1145/1706299.1706312
https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://doi.org/10.1145/966221.966235
https://doi.org/10.1145/966221.966235
https://doi.org/10.1145/966221.966235
https://doi.org/10.1109/TC.1981.1675826
https://www.kookamara.com/jared/2014-itp-ucode.pdf
https://www.kookamara.com/jared/2014-itp-ucode.pdf

22 Author(s) information removed for review

15. Flynn, M.J., Rosin, R.F.: Microprogramming: An introduction and a view-
point. IEEE Transactions on Computers C-20(7), 727–731 (Jul 1971).
https://doi.org/10.1109/T-C.1971.223341

16. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying smt in
symbolic execution of microcode. In: Proceedings of the 2010 Conference on For-
mal Methods in Computer-Aided Design. pp. 121–128. FMCAD ’10, FMCAD Inc,
Austin, TX (2010), http://dl.acm.org/citation.cfm?id=1998496.1998520

17. Gerst, H.: Verification of the vlsi-/370 microprocessor. In: Proceedings. VLSI
and Computer Peripherals. COMPEURO 89. pp. 5/128–5/133 (may 1989).
https://doi.org/10.1109/CMPEUR.1989.93498

18. Goel, S., Slobodova, A., Sumners, R., Swords, S.: Verifying x86 instruction imple-
mentations (2019)

19. Goldman, S.P., Mohr, L.M., Smith, D.R.: Using microcode in the functional
verification of an i/o chip. IBM Journal of Research and Development 49(4),
581–588 (Jul 2005), https://search.proquest.com/docview/220687269?accountid=
11091, copyright International Business Machines Corporation Jul-Sep 2005

20. Greve, D.A.: Symbolic simulation of the jem1 microprocessor. In: Gopalakrishnan,
G., Windley, P. (eds.) Formal Methods in Computer-Aided Design. pp. 321–333.
Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

21. Gunter, T.G., Tredennick, H.L.: Two-level control store for microprogrammed data
processor (Apr 13 1982), uS Patent 4,325,121

22. Harrison, J.: Formal verification at intel. In: 18th Annual IEEE Symposium
of Logic in Computer Science, 2003. Proceedings. pp. 45–54 (June 2003).
https://doi.org/10.1109/LICS.2003.1210044

23. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Sixth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
6th edn. (2017)

24. Hentschel, M., Bubel, R., Hähnle, R.: The symbolic execution debugger (sed):
a platform for interactive symbolic execution, debugging, verification and more.
International Journal on Software Tools for Technology Transfer 21(5), 485–513
(Oct 2019). https://doi.org/10.1007/s10009-018-0490-9, https://doi.org/10.1007/
s10009-018-0490-9

25. Hsu, S.K., Agarwal, A., Mathew, S.K., Krishnamurthy, R.K., Hansson, M., Al-
vandpour, A.: A 9ghz 320x80bit low leakage microcode read only memory in 65nm
cmos. In: 2006 Proceedings of the 32nd European Solid-State Circuits Conference.
pp. 299–302 (Sep 2006). https://doi.org/10.1109/ESSCIR.2006.307590

26. Hunt Jr, W., Kaufmann, M., Moore, J., Slobodova, Z.: Industrial hardware and
software verification with acl2. Philos Trans A Math Phys Eng Sci. 375 (October
2017). https://doi.org/10.1098/rsta.2015.0399

27. Ivanov, L.: Formal verification of a microprocessor control. In: Proceedings of
the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWS-
CAS 2001 (Cat. No.01CH37257). vol. 2, pp. 646–650 vol.2 (Aug 2001).
https://doi.org/10.1109/MWSCAS.2001.986272

28. Jackson, D.: Evolution of processor microcode. IEEE Transactions on Evolutionary
Computation 9(1), 44–54 (Feb 2005). https://doi.org/10.1109/TEVC.2004.837922

29. KiranKumar, V.M.A., Gupta, A., Ghughal, R.: Symbolic trajectory evaluation:
The primary validation vehicle for next generation intel® processor graphics fpu.
In: 2012 Formal Methods in Computer-Aided Design (FMCAD). pp. 149–156 (Oct
2012)

https://doi.org/10.1109/T-C.1971.223341
http://dl.acm.org/citation.cfm?id=1998496.1998520
https://doi.org/10.1109/CMPEUR.1989.93498
https://search.proquest.com/docview/220687269?accountid=11091
https://search.proquest.com/docview/220687269?accountid=11091
https://doi.org/10.1109/LICS.2003.1210044
https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1109/ESSCIR.2006.307590
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1109/MWSCAS.2001.986272
https://doi.org/10.1109/TEVC.2004.837922

Verification of CISC Processors using Software Verification Tools 23

30. Koerner, S., Kuenzel, M., McCain, E.C.: Ibm eserver z900 system microcode veri-
fication by simulation: The virtual power-on process. IBM Journal of Research and
Development 46(4), 587–595 (Jul 2002), https://search.proquest.com/docview/
220658828?accountid=11091, name - IBM Corp; Copyright - Copyright Interna-
tional Business Machines Corporation Jul/Sep 2002; Last updated - 2017-10-31;
CODEN - IBMJAE

31. Koppe, P., Kollenda, B., Fyrbiak, M., Kison, C., Gawlik, R., Paar, C., Holz, T.:
Reverse engineering x86 processor microcode. In: 26th {USENIX} Security Sym-
posium ({USENIX} Security 17). pp. 1163–1180 (2017)

32. McRaven, M., Warford, J.S.: A microcode implementation of the pep/9 computer
(September 2019), unpublished Manuscript

33. McRaven, M., Warford, S.: Pep9micro: Designing a microcoded cpu (2018)
34. Miller, S.P., Srivas, M.: Formal verification of the aamp5 microprocessor: a case

study in the industrial use of formal methods. In: Proceedings of 1995 IEEE
Workshop on Industrial-Strength Formal Specification Techniques. pp. 2–16 (April
1995). https://doi.org/10.1109/WIFT.1995.515475

35. Mueller, R.A., Duda, M.R.: Formal methods of microcode veri-
fication and synthesis. IEEE Software 3(4), 38–48 (July 1986).
https://doi.org/10.1109/MS.1986.233753

36. Oulsnam, G.: Unravelling Unstructured Programs. The Computer Journal 25(3),
379–387 (08 1982). https://doi.org/10.1093/comjnl/25.3.379, https://doi.org/10.
1093/comjnl/25.3.379

37. Pasricha, S., Dutt, N.: On-chip communication architectures: system on chip in-
terconnect. Morgan Kaufmann (2010)

38. Pasricha, S., Dutt, N., Ben-Romdhane, M.: Fast exploration of bus-based com-
munication architectures at the ccatb abstraction. ACM Trans. Embed. Comput.
Syst. 7(2) (Jan 2008). https://doi.org/10.1145/1331331.1331346, https://doi.org/
10.1145/1331331.1331346

39. Redfield, S.R.: A study in microprogrammed processors: A medium sized
microprogrammed processor. IEEE Trans. Comput. 20(7), 743–750 (Jul
1971). https://doi.org/10.1109/T-C.1971.223343, http://dx.doi.org/10.1109/T-C.
1971.223343

40. Snyder, W.: Verilator: the fast free verilog simulator. URL: http://www. veripool.
org (2019)

41. Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R., Moroney, G.: Error
cost escalation through the project life cycle (2004)

42. Turley, J.L.: Advanced 80386 Programming Techniques. McGraw-Hill, Inc., New
York, NY, USA (1988)

43. Ulrich, J.W.: The derivation of microcode by symbolic execution. SIGMICRO
Newsl. 11(3-4), 38–42 (Nov 1980), http://dl.acm.org/citation.cfm?id=1014190.
802709

44. Val, C.G.d.: Conflict-driven symbolic execution: How to learn to get better. Ph.D.
thesis, University of British Columbia (2014)

45. Wagner, A., Dasgupta, S.: Axiomatic proof rules for a machine-specific mi-
croprogramming language. SIGMICRO Newsl. 14(4), 151–158 (Dec 1983).
https://doi.org/10.1145/1096419.1096442, http://doi.acm.org/10.1145/1096419.
1096442

46. Warford, J.S.: Computer Systems. Jones and Bartlett Publishers, Inc., USA, 5th
edn. (2016)

47. Warford, S.: Documentation for exam handouts (2016)

https://search.proquest.com/docview/220658828?accountid=11091
https://search.proquest.com/docview/220658828?accountid=11091
https://doi.org/10.1109/WIFT.1995.515475
https://doi.org/10.1109/MS.1986.233753
https://doi.org/10.1093/comjnl/25.3.379
https://doi.org/10.1093/comjnl/25.3.379
https://doi.org/10.1093/comjnl/25.3.379
https://doi.org/10.1145/1331331.1331346
https://doi.org/10.1145/1331331.1331346
https://doi.org/10.1145/1331331.1331346
https://doi.org/10.1109/T-C.1971.223343
http://dx.doi.org/10.1109/T-C.1971.223343
http://dx.doi.org/10.1109/T-C.1971.223343
http://dl.acm.org/citation.cfm?id=1014190.802709
http://dl.acm.org/citation.cfm?id=1014190.802709
https://doi.org/10.1145/1096419.1096442
http://doi.acm.org/10.1145/1096419.1096442
http://doi.acm.org/10.1145/1096419.1096442

24 Author(s) information removed for review

48. Wilding, M.M., Greve, D.A., Richards, R.J., Hardin, D.S.: Formal verification of
partition management for the aamp7g microprocessor. In: Design and Verification
of Microprocessor Systems for High-Assurance Applications, pp. 175–191. Springer
(2010)

49. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free verilog synthesis suite. In: Proceedings
of the 21st Austrian Workshop on Microelectronics (Austrochip) (2013)

A Overview of Pep/9

This appendix provides an overview of the Pep/9 virtual machine and describes
the applications that implement it7. Pep/9 is a pedagogical virtual machine
described in Computer Systems, fifth edition [46]. It is a 16-bit CISC processor,
which features expanding opcodes that are either unary (one byte) or non-unary
(three bytes), and is designed as an instructional tool to teach computer systems
and organization concepts to undergraduates [46].

There are four applications in the Pep/9 suite of software.

– Pep98—An assembly language and object code programming environment.
– Pep9CPU—A graphical simulator for the microcoded data section of the

Pep/9 CPU.
– Pep9Micro—A unified microcode-assembly language programming environ-

ment, allowing users to debug multiple levels of abstraction simultaneously.
– Pep9Term—A command line utility designed to automate grading of pro-

grams from aforementioned applications.

Figure 8 visualizes the levels of abstraction spanned by these applications.

A.1 Pep/9: Assembly Language and ISA

At the ISA level, the CPU has five registers: the accumulator (A), the index
register (X), the program counter (PC), the stack pointer (SP), and the instruction
register (IR). The accumulator stores computation results, the index register
facilitates array processing, the program counter contains the address of the next
instruction to be executed, the stack pointer points to the top of the runtime
stack, and the instruction register stores the instruction fetched during the fetch
part of the von Neumann cycle. It has four status bits to indicate whether the
result of an operation is: negative (N), zero (Z), signed overflow (V), or unsigned
overflow (C).

Pep/9 has a 16-bit memory space that is byte-addressable. The entire mem-
ory space is accessible without segmentation or paging. It uses memory-mapped

7 Programs and source code available at http://computersystemsbook.com/
5th-edition/pep9/

8 As a matter of notation, Pep/9 (regular font with a “/”) describes the virtual ma-
chine, while Pep9 (monospaced font with no “/”) describes the application.

9 Figure adapted from [46], used with permission.

http://computersystemsbook.com/5th-edition/pep9/
http://computersystemsbook.com/5th-edition/pep9/

Verification of CISC Processors using Software Verification Tools 25

Assembly

level

Application

level

High-order

language level

Operating

systems level

Instruction set

architecture level

Microcode

level

Logic gate

level

App77

6

5

4

3

2

1

HOL6

Asmb5

OS4

ISA3

Mc2

LG1

Fig. 8: Levels of abstraction spanned by the Pep/9 application suite9. Green cor-
responds to Pep9. Blue corresponds to Pep9CPU. Red corresponds to Pep9Micro

and Pep9Term.

Data flow

Main memory

Input

Output

Control

Central

processing

unit

System bus

Fig. 9: Pep9 ISA System Model10.

input and output to process ASCII character streams. Figure 9 shows the sys-
tem model at the ISA level. Details like the number of temporary registers and
processor circuitry are hidden from the user at the ISA level.

Figure 10 lists the instructions in the Pep/9 instruction set. Instructions
specifiers are one byte and operands are two bytes, making unary instructions one
byte wide and non-unary instructions three bytes wide. It has eight addressing
modes that are used by non-unary instructions. These addressing modes aid
translation from C to assembly, performing array addressing, pointer lookups,
and addressing for globally-, heap-, and stack-allocated structs. Figure 11 details
all addressing modes.

The Pep9 application allows users to write and debug assembly language
programs using a built in integrated development environment (IDE). It features

10 Figure adapted from [46], used with permission.
11 Figure adapted from [46], used with permission.

26 Author(s) information removed for review

Fig. 10: Pep/9 instruction set11. Underlined instructions are unary, all others are
non-unary.

Mnemonic Instruction

STOP Halt processor
RET Return from CALL

RETTR Return from trap
MOVSPA Move SP to A
MOVFLGA Move NZVC flags to A〈12..15〉
MOVAFLG Move A〈12..15〉 to NZVC flags

NOTr Bitwise invert r
NEGr Negate r
ASLr Arithmetic shift left r
ASRr Arithmetic shift right r
ROLr Rotate left r
RORr Rotate right r

BR Branch unconditionally
BRLE Branch if ≤
BRLT Branch if <
BREQ Branch if =
BRNE Branch if 6=
BRGE Branch if ≥
BRGT Branch if >
BRV Branch if V
BRC Branch if C
CALL Call subroutine

Mnemonic Instruction

NOP0 Unary no operation
NOP1 Unary no operation trap
NOP Nonunary no operation trap

DECI Decimal input trap
DECO Decimal output trap
HEXO Hexadecimal output trap
STRO String output trap

ADDSP Add to stack pointer (SP)
SUBSP Subtract from stack pointer (SP)

ADDr Add to r
SUBr Subtract from r
ANDr Bitwise AND to r
ORr Bitwise OR to r

CPWr Compare word to r
CPBr Compare byte to r〈8..15〉
LDWr Load word r from memory
LDBr Load byte r〈8..15〉 from memory
STWr Store word r to memory
STBr Store byte r〈8..15〉 to memory

a student-friendly machine language object code in a hexadecimal format, which
gives students the ability to code directly in machine language, bypassing the
assembler. There is an integrated debugger that allows for breakpoints, single-
and multi-step execution, CPU tracing, and memory tracing. It also has the
ability to recover from endless loops.

A.2 Pep9CPU: Microcode and Logic Gates

At the microcode level of abstraction, the CPU has two parts: the data section
and the control section. The data section contains an 8-bit arithmetic logic unit
(ALU), 8-bit data path, a 16-bit address bus, and a register bank containing 32
8-bit registers [47]. Two variations of the CPU exist, one with an 8-bit data bus
and one with a 16-bit data bus. Figure 12 describes circuitry of the 16-bit data
bus variant of the data section. Both variations are simulated within Pep9CPU,
allowing users to understand the tradeoffs between different bus sizes.

The original Pep/9 specification lacks a CPU control section. Without a con-
trol section, which is responsible for branching between microcode instructions,

Verification of CISC Processors using Software Verification Tools 27

Fig. 11: Addressing modes for Pep. OprndSpec is the instruction operand. X is
the index register. SP is the stack pointer register. Mem[...] indicates memory
access.

Abbreviation Name Decoding

I Immediate OprndSpec
D D irect Mem[OprndSpec]
N iNdirect Mem[Mem[OprndSpec]]
S Stack relative Mem[SP + OprndSpec]
SF Stack deFerred Mem[Mem[SP + OprndSpec]]
X indeX ed Mem[OprndSpec + X]
SX Stack indeX ed Mem[SP + OprndSpec + X]
SFX Stack deFerred indeX ed Mem[Mem[SP + OprndSpec] + X]

V

ALU

MDREven

MDREMux

AMux

CMux

CMux
ALU

Cin

S

CSMux

C

Z

N

SCk

CCk

VCk

ZCk

NCk

Cout

AndZ

AndZ

CSMux

MemWrite
MemRead

0
0
0
0

MDRECk

AMux

4

Zout

MARCk

BBusABusCBus

MARB

MARA

System
Bus

Addr

Data

MDROdd

MDROMux

EOMux

MDREMux

MDROMux

EOMux

MARMux

MARMux

MDROCk

A
0 1

X
2 3

SP
4 5

PC
6 7

IR
8

9 10

T1
11

T2
12 13

T3
14 15

T4
16 17

T5
18 19

T6
20 21

0x00M1
22

0x01
23

0x02M2
24

0x03
25

0x04M3
26

0x08
27

0xF0M4
28

0xF6
29

0xFEM5
30

0xFF
31

CPU registers

LoadCk

C5

B5

A5

Mem

Addr

Data
S

C

Z

N

Fig. 12: Pep/9 CPU data section12.

28 Author(s) information removed for review

Data flow

Main memory

Input
Output

Control

Control
section

Data
section

Central
processing
unit

System bus

Fig. 13: Machine model at the microcode level13. The control section is crossed
out, because Pep9CPU does not contain a control section.

no loops or conditional branches can be created in microcode. This limitation
does not allow the simulation of the complete instruction cycle.

Of the register bank’s 32 8-bit registers, 11 registers are used to implement
the ISA-visible registers. A further 10 are hardwired to useful constant val-
ues. The remaining 11 registers are scratch registers for use in microprograms.
The CPU contains an additional shadow carry S bit. It allows users to per-
form computations that do not modify the ISA-visible state, such as carry-out
while incrementing the program counter. Figure 13 shows the system model of
Pep9CPU.

The Pep9CPU application allows users to write Pep/9 microcode fragments
and interact with a simulated Pep/9 CPU. Using Pep9CPU, users can visualize
the execution of limited microcode fragments, and watch data flow through the
processor. Its IDE allows users to find logical errors in microcode fragments using
unit tests. By writing microcode programs, students learn how to control the
data flow through in the CPU data section. Lack of a control section limits users
to writing short, non-branching code fragments. Pep9CPU and Pep9 simulate the
system at two disjoint levels of abstraction.

A.3 Pep9Micro: Merging layers of abstraction

A later work implemented the control section of the CPU [33], completing Pep/9
at the microcode level. The control section uses the 16-bit data bus variant of
the data section. Pep/9’s microcode language was augmented with syntax for
conditional and unconditional branching. Figure 14 presents the circuitry of the
control section. A manuscript describing the design and use of the extended
processor is currently being written [32].

13 Figure adapted from [32], used with permission.

Verification of CISC Processors using Software Verification Tools 29

PValid

29 × 62
Microprogram store

ROM

Conditional
branch

multiplexer

Instruction
specifier
decoder

Addressing
mode

decoder

IsUnary
decoder

Branch
function
decoder

Control signals Branch
function

True
target

False
target

Program counter <15>
NZVCS

Instruction specifier

PValidCk
HasPrefetch

 IsPCEven

2

4

5

8

38

9

9

99

62

9

Fig. 14: Pep/9 CPU control section14.

Each microcode instruction explicitly specifies its successor instructions. In
the case of conditional branches, both the true and false targets are embed-
ded in the instruction format. Programmers may choose from one of 16 branch
functions for each micro-instruction.

A microcode program implementing the ISA instruction cycle was imple-
mented using the RTL specification of Pep/9. This 344 line microcode program
fetches instructions and decodes their operands. Then, it executes the instruc-
tion, before repeating the instruction cycle. This process continues until an ex-
ception is raised or STOP mnemonic is encountered. With a complete control
section and microprogram implementation, there is no longer a divide between
microcode and the instruction set architecture.

The Pep9Micro application provides a combined microcode-assembly envi-
ronment, allowing users to write and debug programs at multiple levels of ab-
straction simultaneously. It is a synthesis of existing Pep9 and Pep9CPU appli-
cations. It uses the same assembly language IDE, breakpoint, and debugging
facilities in Pep9. Pep9Micro visualizes data flow through the data section of the
CPU.

Pep9Micro augments the existing microcode IDE to allow for microcode
breakpoints and debugging. While debugging, it is possible to switch between
the ISA level and microcode level on-the-fly. Users are also allowed to modify
or replace the microcode implementing the instruction set, allowing them to ex-
periment with new instructions. These cumulative modifications allow users to
see the relationship between all levels of abstraction in a processor at the same
time.

14 Figure adapted from [32], used with permission.

	Pep9Milli: Verification of CISC Processors using Software Verification Tools

